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Primary Aims

• Web Mining
– Statistics in tables, graphs, structured records 
– About Named Entities (criminals, universities, 

cities, …)
– Patterns of statistics over time

• Question Answering
– Structured databases (of extracted information)
– Semi-structured questions
– Similarity-based ranking of tables, graphs, 

records
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Sample Questions

• Student Demographics

What are the main changes, if any, in 
the past decade?

Have other universities exhibited a 
similar trend?    

What is the distribution of students in 
university X by departments?
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A picture is worth a thousand of words
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A picture is worth a thousand of words
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A picture is worth a thousand of words
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Rationale

• Statistic-based QA is beneficial for certain 
types of questions

• Web pages contains rich statistical 
information

• Information extraction techniques need to 
be developed and improved Web mining

• Comparative image analysis (on curves, 
graphs) should be investigated for QA based 
on statistics
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What is novel?

• Mining the Web for distributed statistical 
information

• Answering questions using statistics in a 
tabular or graphical form

• Developing meaningful similarity metrics 
for comparing curves or temporal trends
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Next …

• Q/A
– Question Templates
– Answer Formulation

• Comparing Curves

– Query Relaxation

• Web Mining
– Focused crawling of invisible Web sites

• Using Named Entities with statistical weights

– Wrapper induction for different web sites 
• Supervised learning

– Information extraction for tabular data
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Question Templates

• Three domains chosen -- universities, 
criminals, properties

• Templates defined for each domain
• Assumed that different domains will 

have different templates
• Allowing questions to relate more 

than one domain at the same time
• Chose XML to formulate questions
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Representation - Tables
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Representation - Tables
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Comparing Curves

• Once we retrieve the data for a query, we 
can fit a curve and compute its trend.

• We need to figure out which trends are 
most “similar”
– A lot of different approaches possible
– Need testing to figure out if any is good 

enough 
– Or, if we need to define a new metric.
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Comparing Curves

• Let’s start simple:
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• All series have same 
number of data 
points.
– 1-to-1 correspondence
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Comparing Curves

• Let’s start simple:

• Approach 1:
– Define dissimilarity by 

point wise comparison:

– Picks curves x and y.
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Comparing Curves

• Let’s start simple:

• Approach 2:
– Define dissimilarity by 

difference in changes 
over consecutive 
points:

– Picks curves x and z.
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Comparing Curves
• Relaxing assumption – handling missing 

data:
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• Need for filling in 
missing data inside the 
series – interpolation

• Need for filling missing 
data at the end of the 
series – extrapolation
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Comparing Curves
• A (relatively) complex approach:
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We can approximate each 
slope as a series of lines 
and compare those.
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Comparing Curves
• Linear renormalization of curves:
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What if one curve only 
covers a part of the 
total time scale?

– Need to stretch so that 
we can compare with 
the target curve.

– Probably a good idea to 
punish the short curve 
though.
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Comparing Curves

• Taking analysis a 
step further:

We can use wavelets to 
decompose the ‘signal’
– We get a “high frequency” 

and a “low frequency” 
component.

– For complicated graphs 
can reveal underlying 
relationships.

– Probably an overkill for 
basic graphs.
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Evaluation Plan
• Data collections

– University Students corpus
– Property Ownership corpus
– Criminal Records corpus

• What to Evaluate?
– End-to-end performance (black box)

• Human annotated, paired test query-answer(s)
• Precision, recall, F1, or MRR

– Component performance (glass box)
• Web mining module (quantity & quality of info)
• Answer extraction module

– Right graphs, tables for Q?
• Similarity metrics for graphs & tables

• User presentation/interaction interface
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Curve-Curve Similarity:
Which is Best?
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More on Curve Similarity

• Multiple methods
– Analytic (wavelets or derivatives)
– Inflection-point centric (Fink et al)
– With displacement, scaling, embedding…

• Humans (analysts) are final arbiters
– Maximal correlation of method with aggregate 

human judgments
– Collect a set of graphs & similarity judgment corpus
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Concluding Remarks

• MINERVA is an Exploratory Project
– Uncharted territories:

• Graph or chart as query (and answer)
• Mining for aggregate statistical data

– Evaluation must track research
• Component glassbox comes first
• TREC-style in subsequent periods
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